3.7.51 \(\int \frac {A+C \cos ^2(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx\) [651]

3.7.51.1 Optimal result
3.7.51.2 Mathematica [A] (verified)
3.7.51.3 Rubi [A] (verified)
3.7.51.4 Maple [B] (verified)
3.7.51.5 Fricas [C] (verification not implemented)
3.7.51.6 Sympy [F]
3.7.51.7 Maxima [F]
3.7.51.8 Giac [F]
3.7.51.9 Mupad [B] (verification not implemented)

3.7.51.1 Optimal result

Integrand size = 27, antiderivative size = 174 \[ \int \frac {A+C \cos ^2(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=-\frac {4 a C \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{3 b^2 d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {2 \left (2 a^2 C+b^2 (3 A+C)\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{3 b^2 d \sqrt {a+b \cos (c+d x)}}+\frac {2 C \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{3 b d} \]

output
2/3*C*sin(d*x+c)*(a+b*cos(d*x+c))^(1/2)/b/d-4/3*a*C*(cos(1/2*d*x+1/2*c)^2) 
^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2)*(b/(a+b))^( 
1/2))*(a+b*cos(d*x+c))^(1/2)/b^2/d/((a+b*cos(d*x+c))/(a+b))^(1/2)+2/3*(2*a 
^2*C+b^2*(3*A+C))*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*Elliptic 
F(sin(1/2*d*x+1/2*c),2^(1/2)*(b/(a+b))^(1/2))*((a+b*cos(d*x+c))/(a+b))^(1/ 
2)/b^2/d/(a+b*cos(d*x+c))^(1/2)
 
3.7.51.2 Mathematica [A] (verified)

Time = 0.91 (sec) , antiderivative size = 148, normalized size of antiderivative = 0.85 \[ \int \frac {A+C \cos ^2(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\frac {-4 a (a+b) C \sqrt {\frac {a+b \cos (c+d x)}{a+b}} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )+2 \left (3 A b^2+\left (2 a^2+b^2\right ) C\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )+2 b C (a+b \cos (c+d x)) \sin (c+d x)}{3 b^2 d \sqrt {a+b \cos (c+d x)}} \]

input
Integrate[(A + C*Cos[c + d*x]^2)/Sqrt[a + b*Cos[c + d*x]],x]
 
output
(-4*a*(a + b)*C*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticE[(c + d*x)/2, 
(2*b)/(a + b)] + 2*(3*A*b^2 + (2*a^2 + b^2)*C)*Sqrt[(a + b*Cos[c + d*x])/( 
a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)] + 2*b*C*(a + b*Cos[c + d*x]) 
*Sin[c + d*x])/(3*b^2*d*Sqrt[a + b*Cos[c + d*x]])
 
3.7.51.3 Rubi [A] (verified)

Time = 0.83 (sec) , antiderivative size = 178, normalized size of antiderivative = 1.02, number of steps used = 12, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.444, Rules used = {3042, 3503, 27, 3042, 3231, 3042, 3134, 3042, 3132, 3142, 3042, 3140}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+C \cos ^2(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+C \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 3503

\(\displaystyle \frac {2 \int \frac {b (3 A+C)-2 a C \cos (c+d x)}{2 \sqrt {a+b \cos (c+d x)}}dx}{3 b}+\frac {2 C \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 b d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {b (3 A+C)-2 a C \cos (c+d x)}{\sqrt {a+b \cos (c+d x)}}dx}{3 b}+\frac {2 C \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 b d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {b (3 A+C)-2 a C \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{3 b}+\frac {2 C \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 b d}\)

\(\Big \downarrow \) 3231

\(\displaystyle \frac {\frac {\left (2 a^2 C+b^2 (3 A+C)\right ) \int \frac {1}{\sqrt {a+b \cos (c+d x)}}dx}{b}-\frac {2 a C \int \sqrt {a+b \cos (c+d x)}dx}{b}}{3 b}+\frac {2 C \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 b d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\left (2 a^2 C+b^2 (3 A+C)\right ) \int \frac {1}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {2 a C \int \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}dx}{b}}{3 b}+\frac {2 C \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 b d}\)

\(\Big \downarrow \) 3134

\(\displaystyle \frac {\frac {\left (2 a^2 C+b^2 (3 A+C)\right ) \int \frac {1}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {2 a C \sqrt {a+b \cos (c+d x)} \int \sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}dx}{b \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}}{3 b}+\frac {2 C \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 b d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\left (2 a^2 C+b^2 (3 A+C)\right ) \int \frac {1}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {2 a C \sqrt {a+b \cos (c+d x)} \int \sqrt {\frac {a}{a+b}+\frac {b \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}dx}{b \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}}{3 b}+\frac {2 C \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 b d}\)

\(\Big \downarrow \) 3132

\(\displaystyle \frac {\frac {\left (2 a^2 C+b^2 (3 A+C)\right ) \int \frac {1}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {4 a C \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{b d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}}{3 b}+\frac {2 C \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 b d}\)

\(\Big \downarrow \) 3142

\(\displaystyle \frac {\frac {\left (2 a^2 C+b^2 (3 A+C)\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}}dx}{b \sqrt {a+b \cos (c+d x)}}-\frac {4 a C \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{b d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}}{3 b}+\frac {2 C \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 b d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\left (2 a^2 C+b^2 (3 A+C)\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}}dx}{b \sqrt {a+b \cos (c+d x)}}-\frac {4 a C \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{b d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}}{3 b}+\frac {2 C \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 b d}\)

\(\Big \downarrow \) 3140

\(\displaystyle \frac {\frac {2 \left (2 a^2 C+b^2 (3 A+C)\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{b d \sqrt {a+b \cos (c+d x)}}-\frac {4 a C \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{b d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}}{3 b}+\frac {2 C \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 b d}\)

input
Int[(A + C*Cos[c + d*x]^2)/Sqrt[a + b*Cos[c + d*x]],x]
 
output
((-4*a*C*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + b)])/( 
b*d*Sqrt[(a + b*Cos[c + d*x])/(a + b)]) + (2*(2*a^2*C + b^2*(3*A + C))*Sqr 
t[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)])/(b* 
d*Sqrt[a + b*Cos[c + d*x]]))/(3*b) + (2*C*Sqrt[a + b*Cos[c + d*x]]*Sin[c + 
 d*x])/(3*b*d)
 

3.7.51.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3132
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a 
 + b]/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, 
b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3134
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[a + 
b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c + d*x])/(a + b)]   Int[Sqrt[a/(a + b) + ( 
b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2 
, 0] &&  !GtQ[a + b, 0]
 

rule 3140
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*S 
qrt[a + b]))*EllipticF[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[ 
{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3142
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[(a 
 + b*Sin[c + d*x])/(a + b)]/Sqrt[a + b*Sin[c + d*x]]   Int[1/Sqrt[a/(a + b) 
 + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - 
 b^2, 0] &&  !GtQ[a + b, 0]
 

rule 3231
Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*sin[(e_.) + ( 
f_.)*(x_)]], x_Symbol] :> Simp[(b*c - a*d)/b   Int[1/Sqrt[a + b*Sin[e + f*x 
]], x], x] + Simp[d/b   Int[Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a, b 
, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]
 

rule 3503
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (C_.)*sin[(e_.) + 
 (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*((a + b*Sin[e + f*x])^ 
(m + 1)/(b*f*(m + 2))), x] + Simp[1/(b*(m + 2))   Int[(a + b*Sin[e + f*x])^ 
m*Simp[A*b*(m + 2) + b*C*(m + 1) - a*C*Sin[e + f*x], x], x], x] /; FreeQ[{a 
, b, e, f, A, C, m}, x] &&  !LtQ[m, -1]
 
3.7.51.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(531\) vs. \(2(216)=432\).

Time = 11.12 (sec) , antiderivative size = 532, normalized size of antiderivative = 3.06

method result size
default \(-\frac {2 \sqrt {\left (2 b \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+a -b \right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (4 C \left (\cos ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b^{2}+3 A \,b^{2} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {\frac {2 b \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+a -b}{a -b}}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right )+2 C \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a b -6 C \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b^{2}+2 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {\frac {2 b \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+a -b}{a -b}}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a^{2}+C \,b^{2} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {\frac {2 b \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+a -b}{a -b}}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right )-2 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {\frac {2 b \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+a -b}{a -b}}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a^{2}+2 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {\frac {2 b \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+a -b}{a -b}}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a b -2 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) a b +2 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) b^{2}\right )}{3 b^{2} \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +\left (a +b \right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+a +b}\, d}\) \(532\)
parts \(\frac {2 A \sqrt {-\frac {2 b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-a -b}{a +b}}\, \operatorname {am}^{-1}\left (\frac {d x}{2}+\frac {c}{2}\bigg | \frac {\sqrt {2}\, \sqrt {b}}{\sqrt {a +b}}\right )}{d \sqrt {2 b \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+a -b}}-\frac {2 C \sqrt {\left (2 b \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+a -b \right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (4 \left (\cos ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b^{2}+2 \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a b -6 \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b^{2}+2 a^{2} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {\frac {2 b \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+a -b}{a -b}}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right )+b^{2} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {\frac {2 b \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+a -b}{a -b}}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right )-2 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {\frac {2 b \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+a -b}{a -b}}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a^{2}+2 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {\frac {2 b \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+a -b}{a -b}}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a b -2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) a b +2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) b^{2}\right )}{3 b^{2} \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +\left (a +b \right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+a +b}\, d}\) \(533\)

input
int((A+C*cos(d*x+c)^2)/(a+cos(d*x+c)*b)^(1/2),x,method=_RETURNVERBOSE)
 
output
-2/3*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(4*C*cos( 
1/2*d*x+1/2*c)^5*b^2+3*A*b^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*b*cos(1/2*d* 
x+1/2*c)^2+a-b)/(a-b))^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/ 
2))+2*C*cos(1/2*d*x+1/2*c)^3*a*b-6*C*cos(1/2*d*x+1/2*c)^3*b^2+2*C*(sin(1/2 
*d*x+1/2*c)^2)^(1/2)*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)/(a-b))^(1/2)*Elliptic 
F(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^2+C*b^2*(sin(1/2*d*x+1/2*c)^2)^ 
(1/2)*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)/(a-b))^(1/2)*EllipticF(cos(1/2*d*x+1 
/2*c),(-2*b/(a-b))^(1/2))-2*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*b*cos(1/2*d 
*x+1/2*c)^2+a-b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1 
/2))*a^2+2*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)/ 
(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a*b-2*C*cos( 
1/2*d*x+1/2*c)*a*b+2*C*cos(1/2*d*x+1/2*c)*b^2)/b^2/(-2*sin(1/2*d*x+1/2*c)^ 
4*b+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(-2*b*sin(1/2*d*x 
+1/2*c)^2+a+b)^(1/2)/d
 
3.7.51.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 413, normalized size of antiderivative = 2.37 \[ \int \frac {A+C \cos ^2(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\frac {-6 i \, \sqrt {2} C a b^{\frac {3}{2}} {\rm weierstrassZeta}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, {\rm weierstrassPInverse}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) + 3 i \, b \sin \left (d x + c\right ) + 2 \, a}{3 \, b}\right )\right ) + 6 i \, \sqrt {2} C a b^{\frac {3}{2}} {\rm weierstrassZeta}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, {\rm weierstrassPInverse}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) - 3 i \, b \sin \left (d x + c\right ) + 2 \, a}{3 \, b}\right )\right ) + 6 \, \sqrt {b \cos \left (d x + c\right ) + a} C b^{2} \sin \left (d x + c\right ) + \sqrt {2} {\left (-4 i \, C a^{2} - 3 i \, {\left (3 \, A + C\right )} b^{2}\right )} \sqrt {b} {\rm weierstrassPInverse}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) + 3 i \, b \sin \left (d x + c\right ) + 2 \, a}{3 \, b}\right ) + \sqrt {2} {\left (4 i \, C a^{2} + 3 i \, {\left (3 \, A + C\right )} b^{2}\right )} \sqrt {b} {\rm weierstrassPInverse}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) - 3 i \, b \sin \left (d x + c\right ) + 2 \, a}{3 \, b}\right )}{9 \, b^{3} d} \]

input
integrate((A+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^(1/2),x, algorithm="fricas")
 
output
1/9*(-6*I*sqrt(2)*C*a*b^(3/2)*weierstrassZeta(4/3*(4*a^2 - 3*b^2)/b^2, -8/ 
27*(8*a^3 - 9*a*b^2)/b^3, weierstrassPInverse(4/3*(4*a^2 - 3*b^2)/b^2, -8/ 
27*(8*a^3 - 9*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) + 3*I*b*sin(d*x + c) + 2*a 
)/b)) + 6*I*sqrt(2)*C*a*b^(3/2)*weierstrassZeta(4/3*(4*a^2 - 3*b^2)/b^2, - 
8/27*(8*a^3 - 9*a*b^2)/b^3, weierstrassPInverse(4/3*(4*a^2 - 3*b^2)/b^2, - 
8/27*(8*a^3 - 9*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) - 3*I*b*sin(d*x + c) + 2 
*a)/b)) + 6*sqrt(b*cos(d*x + c) + a)*C*b^2*sin(d*x + c) + sqrt(2)*(-4*I*C* 
a^2 - 3*I*(3*A + C)*b^2)*sqrt(b)*weierstrassPInverse(4/3*(4*a^2 - 3*b^2)/b 
^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) + 3*I*b*sin(d*x + c 
) + 2*a)/b) + sqrt(2)*(4*I*C*a^2 + 3*I*(3*A + C)*b^2)*sqrt(b)*weierstrassP 
Inverse(4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, 1/3*(3*b*cos 
(d*x + c) - 3*I*b*sin(d*x + c) + 2*a)/b))/(b^3*d)
 
3.7.51.6 Sympy [F]

\[ \int \frac {A+C \cos ^2(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\int \frac {A + C \cos ^{2}{\left (c + d x \right )}}{\sqrt {a + b \cos {\left (c + d x \right )}}}\, dx \]

input
integrate((A+C*cos(d*x+c)**2)/(a+b*cos(d*x+c))**(1/2),x)
 
output
Integral((A + C*cos(c + d*x)**2)/sqrt(a + b*cos(c + d*x)), x)
 
3.7.51.7 Maxima [F]

\[ \int \frac {A+C \cos ^2(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\int { \frac {C \cos \left (d x + c\right )^{2} + A}{\sqrt {b \cos \left (d x + c\right ) + a}} \,d x } \]

input
integrate((A+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^(1/2),x, algorithm="maxima")
 
output
integrate((C*cos(d*x + c)^2 + A)/sqrt(b*cos(d*x + c) + a), x)
 
3.7.51.8 Giac [F]

\[ \int \frac {A+C \cos ^2(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\int { \frac {C \cos \left (d x + c\right )^{2} + A}{\sqrt {b \cos \left (d x + c\right ) + a}} \,d x } \]

input
integrate((A+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^(1/2),x, algorithm="giac")
 
output
integrate((C*cos(d*x + c)^2 + A)/sqrt(b*cos(d*x + c) + a), x)
 
3.7.51.9 Mupad [B] (verification not implemented)

Time = 2.01 (sec) , antiderivative size = 171, normalized size of antiderivative = 0.98 \[ \int \frac {A+C \cos ^2(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\frac {2\,A\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |\frac {2\,b}{a+b}\right )\,\sqrt {\frac {a+b\,\cos \left (c+d\,x\right )}{a+b}}}{d\,\sqrt {a+b\,\cos \left (c+d\,x\right )}}+\frac {2\,C\,\sin \left (c+d\,x\right )\,\sqrt {a+b\,\cos \left (c+d\,x\right )}}{3\,b\,d}+\frac {2\,C\,\sqrt {\frac {a+b\,\cos \left (c+d\,x\right )}{a+b}}\,\left (\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |\frac {2\,b}{a+b}\right )\,\left (2\,a^2+b^2\right )-2\,a\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |\frac {2\,b}{a+b}\right )\,\left (a+b\right )\right )}{3\,b^2\,d\,\sqrt {a+b\,\cos \left (c+d\,x\right )}} \]

input
int((A + C*cos(c + d*x)^2)/(a + b*cos(c + d*x))^(1/2),x)
 
output
(2*A*ellipticF(c/2 + (d*x)/2, (2*b)/(a + b))*((a + b*cos(c + d*x))/(a + b) 
)^(1/2))/(d*(a + b*cos(c + d*x))^(1/2)) + (2*C*sin(c + d*x)*(a + b*cos(c + 
 d*x))^(1/2))/(3*b*d) + (2*C*((a + b*cos(c + d*x))/(a + b))^(1/2)*(ellipti 
cF(c/2 + (d*x)/2, (2*b)/(a + b))*(2*a^2 + b^2) - 2*a*ellipticE(c/2 + (d*x) 
/2, (2*b)/(a + b))*(a + b)))/(3*b^2*d*(a + b*cos(c + d*x))^(1/2))